Metabolic effects and kill of human T-cell leukemia by 5-deazaacyclotetrahydrofolate, a specific inhibitor of glycineamide ribonucleotide transformylase.
نویسندگان
چکیده
Metabolic effects and mode of cytotoxicity of 5-deazaacyclotetrahydrofolate (5-DACTHF, BW543U76), a glycineamide ribonucleotide transformylase inhibitor, were studied in MOLT-4 cells, a human T-cell leukemia line. 5-DACTHF inhibits purine synthesis with 50% inhibitory concentration values of 0.5 microM and 0.08 microM following 6- or 24-h exposure to drug, respectively. At 6 h, adenine nucleotide synthesis is preferentially inhibited over guanine nucleotide synthesis. A similar effect was observed with another glycineamide ribonucleotide transformylase inhibitor, 5,10-dideazatetrahydrofolate. GTP was depleted to 40% of control and ATP to 10% of control by 5 microM 5-DACTHF. After a transitory increase, UTP and CTP were depleted to 30% of control. Deoxynucleotides were also depleted by the drug; dCTP was depleted to the greatest extent, followed by dATP, dTTP, and dGTP, respectively. MOLT-4 cell growth was inhibited by 5-DACTHF with a 50% inhibitory concentration of 0.066 microM. Complete reversal was effected by hypoxanthine, and there was no reversal by thymidine. The drug was cytotoxic to MOLT-4 cells in the range 0.25 to 5.0 microM, but a minimum of 48 h was required for trypan blue-staining dead cells to appear. The rate and extent of kill with the thymidylate synthase inhibitor 2-methyl-10-propargyl-5,8-dideazafolate was greater than with 5-DACTHF, which indicates that kill by inhibition of thymidylate synthase is more effective than that by inhibition of purine synthesis. Electron microscopy of MOLT-4 cells exposed to 5-DACTHF showed electron-dense mitochondria and nuclear changes reminiscent of apoptosis. These morphological changes were accompanied by the appearance of DNA strand breaks at approximately 180-base pair intervals (internucleosomal breaks). Concomitant proteolysis of nuclear proteins poly(ADP-ribose) polymerase and lamin B was observed.
منابع مشابه
Metabolic Effects and Kill of Human T-Cell Leukemia by 5-Deazaacyclotetrahydrofolate, a Specific Inhibitor of Glycineamide Ribonucleotide Transformylase1
Metabolic effects and mode of cytotoxicity of 5-deazaacyclotetrahydrofolate (5-DACTHF, BW543U76), a glycineamide ribonucleotide transformylase inhibitor, were studied in MOLT-4 cells, a human T-cell leukemia line. 5-DACTHF inhibits purine synthesis with 50% inhibi tory concentration values of 0.5 MMand 0.08 MMfollowing 6or 24-h exposure to drug, respectively. At 6 h, adenine nucleotide synthesi...
متن کاملIn vivo and in vitro metabolism of 5-deazaacyclotetrahydrofolate, an acyclic tetrahydrofolate analogue.
5-Deazaacyclotetrahydrofolate is a cytotoxic tetrahydrofolate analogue which inhibits glycinamide ribonucleotide transformylase (Kelley et al., J. Med. Chem., 33: 561-567, 1990). Cultured mouse L-cells and human MCF-7 and MOLT-4 cells concentrated the drug several hundred-fold after 24 h of continuous exposure to a cytotoxic level (100-200 nM) of radiolabeled drug. High performance liquid chrom...
متن کاملEffects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells
Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome p...
متن کاملMammalian glycinamide ribonucleotide transformylase. Kinetic mechanism and associated de novo purine biosynthetic activities.
Glycinamide ribonucleotide transformylase catalyzes the conversion of glycinamide ribonucleotide and 10-formyltetrahydrofolate to formylglycinamide ribonucleotide and tetrahydrofolate. The enzyme purified from the murine lymphoma cell line L5178Y also catalyzes two other de novo purine biosynthetic activities, glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. T...
متن کاملThe transformylase enzymes of de novo purine bi osy n t h esis
Formyl transfer reactions play a key role in the construction of the purine heterocycle during de now purine biosynthesis. Formylation is catalyzed early in the pathway by the purN glycinamide ribonucleotide transformylase (GAR Transformylase, EC 2.1.2.2) in a tetrahydrofolate-dependent manner and also by the purT GAR transformylase in a tetrahydrofolate-independent manner in bacteria. Late in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 52 18 شماره
صفحات -
تاریخ انتشار 1992